Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
China Journal of Chinese Materia Medica ; (24): 1319-1329, 2023.
Article in Chinese | WPRIM | ID: wpr-970603

ABSTRACT

This study aimed to investigate the biological effects and underlying mechanisms of the total ginsenosides from Panax ginseng stems and leaves on lipopolysaccharide(LPS)-induced acute lung injury(ALI) in mice. Sixty male C57BL/6J mice were randomly divided into a control group, a model group, the total ginsenosides from P. ginseng stems and leaves normal administration group(61.65 mg·kg~(-1)), and low-, medium-, and high-dose total ginsenosides from P. ginseng stems and leaves groups(15.412 5, 30.825, and 61.65 mg·kg~(-1)). Mice were administered for seven continuous days before modeling. Twenty-four hours after modeling, mice were sacrificed to obtain lung tissues and calculate lung wet/dry ratio. The number of inflammatory cells in bronchoalveolar lavage fluid(BALF) was detected. The levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in BALF were detected. The mRNA expression levels of IL-1β, IL-6, and TNF-α, and the levels of myeloperoxidase(MPO), glutathione peroxidase(GSH-Px), superoxide dismutase(SOD), and malondialdehyde(MDA) in lung tissues were determined. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in lung tissues. The gut microbiota was detected by 16S rRNA sequencing, and gas chromatography-mass spectrometry(GC-MS) was applied to detect the content of short-chain fatty acids(SCFAs) in se-rum. The results showed that the total ginsenosides from P. ginseng stems and leaves could reduce lung index, lung wet/dry ratio, and lung damage in LPS-induced ALI mice, decrease the number of inflammatory cells and levels of inflammatory factors in BALF, inhibit the mRNA expression levels of inflammatory factors and levels of MPO and MDA in lung tissues, and potentiate the activity of GSH-Px and SOD in lung tissues. Furthermore, they could also reverse the gut microbiota disorder, restore the diversity of gut microbiota, increase the relative abundance of Lachnospiraceae and Muribaculaceae, decrease the relative abundance of Prevotellaceae, and enhance the content of SCFAs(acetic acid, propionic acid, and butyric acid) in serum. This study suggested that the total ginsenosides from P. ginseng stems and leaves could improve lung edema, inflammatory response, and oxidative stress in ALI mice by regulating gut microbiota and SCFAs metabolism.


Subject(s)
Mice , Male , Animals , Ginsenosides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6 , Panax/genetics , Lipopolysaccharides/adverse effects , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Mice, Inbred C57BL , Acute Lung Injury/genetics , Lung/metabolism , Superoxide Dismutase/metabolism , Plant Leaves/metabolism , RNA, Messenger
2.
Journal of Central South University(Medical Sciences) ; (12): 280-288, 2022.
Article in English | WPRIM | ID: wpr-928969

ABSTRACT

OBJECTIVES@#Chlorogenic acid has various physiological activities such as antibacterial, anti-inflammatory, and antiviral activities. Studies have shown that chlorogenic acid can alleviate the inflammatory response of mice with acute lung injury (ALI), but the specific mechanism is still unclear. This study aims to investigate whether chlorogenic acid attenuates lipopolysaccharide (LPS)-induced ALI in mice by regulating the microRNA-223 (miR-223)/nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) axis.@*METHODS@#SPF grade BALBc male mice were randomly divided into a control group, a model group, a chlorogenic acid group, a chlorogenic acid+miR-223 negative control (miR-223 NC) group, and a chlorogenic acid+miR-223 inhibitor (miR-223 antagomir) group, 10 mice in each group. Except the control group, the other groups were instilled with 4 mg/kg LPS through the airway to establish the ALI mouse model. After the modeling, the mice in the chlorogenic acid group were continuously given chlorogenic acid (100 mg/kg) by gavage for 7 d. The chlorogenic acid+miR-223 NC group and the chlorogenic acid+miR-223 antagomir group were given 100 mg/kg chlorogenic acid by gavage every day, and then were injected with 10 μL of miR-223 NC (0.5 nmol/μL) and miR-223 antagomir (0.5 nmol/μL) respectively for 7 consecutive days.The control group and the model group were replaced with normal saline. The lung tissues of mice were taken to measure the ratios of lung wet to dry weight (W/D). The bronchoalveolar lavage fluid of mice was collected to measure the levels of TNF-α, IL-6, and IL-1β by ELISA kit and to count the number of eosinophils (EOS), lymphocytes, neutrophils under light microscope. After HE staining, the pathological changes of lung tissues were observed and lung injury was scored. qRT-PCR method were used to determine the expression levels of miR-223 in lung tissues. Western blotting was used to determine the expression levels of NLRP3 protein in mouse lung tissues. Luciferase reporter assay was used to analyze the targeting relationship of miR-223 to NLRP3.@*RESULTS@#Compared with the control group, the lung W/D value, the lung injury score and the level of inflammatory factors in the bronchoalveolar lavage fluid were significantly increased in the model group (all P<0.05); the infiltration of inflammatory cells in the lung tissue was severe; the alveolar space was significantly increased; the alveolar wall was significantly thickened; the number of EOS, lymphocytes, and neutrophils in the bronchoalveolar lavage fluid was significantly increased (all P<0.05); the expression levels of miR-223 in lung tissue were significantly decreased (P<0.05); and the protein expression levels of NLRP3 were significantly increased (P<0.05). Compared with the model group, the W/D value of lungs, lung injury score, and levels of inflammatory factors in bronchoalveolar lavage fluid were significantly decreased in the chlorogenic acid group, the chlorogenic acid+miR-223 NC group, and the chlorogenic acid+miR-223 antagomir group (all P<0.05); lung tissues damage was alleviated; the numbers of EOS, lymphocytes, and neutrophils in bronchoalveolar lavage fluid were significantly decreased (all P<0.05); the expression levels of miR-223 in lung tissues were significantly increased (P<0.05); and the expression levels of NLRP3 protein were significantly decreased (P<0.05). Compared with the chlorogenic acid group, the lung W/D value, lung injury score, and inflammatory factor levels in the bronchoalveolar lavage fluid were significantly increased in the chlorogenic acid+miR-223 antagomir group (all P<0.05); lung tissue damage was aggravated; the number of EOS, lymphocytes and neutrophils in bronchoalveolar lavage fluid significantly increased (all P<0.05); the expression levels of miR-223 in lung tissues were significantly decreased (P<0.05); and the expression levels of NLRP3 protein were significantly increased (P<0.05). The results of luciferase reporter assay showed that miR-223 had a targeting relationship with NLRP3.@*CONCLUSIONS@#Chlorogenic acid may increase the level of miR-223, target the inhibition of NLRP3 expression, reduce LPS-induced inflammatory response in ALI mice, and alleviate pathological damage of lung tissues.


Subject(s)
Animals , Male , Mice , Acute Lung Injury/genetics , Antagomirs/metabolism , Bronchoalveolar Lavage Fluid , Chlorogenic Acid/metabolism , Lipopolysaccharides/adverse effects , Lung/pathology , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
3.
China Journal of Chinese Materia Medica ; (24): 151-158, 2022.
Article in Chinese | WPRIM | ID: wpr-927922

ABSTRACT

Lung and intestine combination therapy(LICT) is effective in the treatment of acute lung injury(ALI). In this study, the combination of Mahuang Decoction and Dachengqi Decoction(hereinafter referred to as the combination), a manifestation of LICT, was employed to explore the effect of nuclear factor kappaB(NF-κB)/nucleotide binding oligomerization domain-like receptors-3(NLRP3) pathway and alveolar macrophage activation on the lung inflammation in rats with ALI, for the purpose of elucidating the mechanism of LICT in treating ALI. After the modeling of ALI with limpolysaccharide(LPS, ip), rats were respectively given(ig) the combination at 10, 7.5, and 5 g·kg~(-1)(high-dose, medium-dose, and low-dose LICT groups, separately), once every 8 h for 3 times. Haematoxylin-eosin(HE) staining was used to observe the histopathological changes of lung tissue, followed by the scoring of inflammation. Immunohistochemistry was applied to detect alveolar macrophage activation, enzyme-linked immunosorbent assay(ELISA) was applied to detect the serum content of tumor necrosis factor-α(TNF-α) and interleukin-18(IL-18), Western blot was applied to detect the protein expression of phosphorylated-nuclear factor kappaB p65(p-NF-κB p65), nuclear factor kappaB p65(NF-κB p65), phosphorylated-inhibitor kappaB alpha(p-IκBα), inhibitor kappaB alpha(IκBα), and NLRP3 in lung tissue, and quantitative reverse transcription-PCR(qRT-PCR) was applied to detect the mRNA expression of TNF-α, IL-18, NLRP3, and NF-κB p65 in lung tissue. The results showed that LICT groups demonstrated lung injury relief, decrease in inflammation score, alleviation of alveolar macrophage activation, significant decline in serum content of inflammatory factors TNF-α and IL-18, and decrease of the protein expression of p-NF-κB p65/NF-κB p65, p-IκBα/IκBα, and NLRP3, and mRNA expression of TNF-α, IL-18, NLRP3, and NF-κB p65 in lung tissue. In summary, LICT has definite therapeutic effect on ALI. The mechanism is that it inhibits alveolar macrophage activation by suppressing NF-κB/NLRP3 signaling pathway, thereby reducing the activation and release of inflammatory factors and finally inhibiting inflammation.


Subject(s)
Animals , Rats , Acute Lung Injury/genetics , Drugs, Chinese Herbal , Intestines , Lipopolysaccharides , Lung/metabolism , Macrophage Activation , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction
4.
Acta Physiologica Sinica ; (6): 401-410, 2022.
Article in Chinese | WPRIM | ID: wpr-939575

ABSTRACT

The purpose of this paper was to study the transcriptional regulation of nuclear respiratory factor 1 (NRF1) on nuclear factor kappa B (NF-κB), a key molecule in lipopolysaccharide (LPS)-induced lung epithelial inflammation, and to clarify the mechanism of NRF1-mediated inflammatory response in lung epithelial cells. In vivo, male BALB/c mice were treated with NRF1 siRNA, followed with LPS (4 mg/kg) or 0.9% saline through respiratory tract, and sacrificed 48 h later. Expression levels of NRF1, NF-κB p65 and its target genes were detected by Western blot and real-time PCR. Nuclear translocation of NRF1 or p65 was measured by immunofluorescent technique. In vitro, L132 cells were transfected with NRF1 siRNA or treated with BAY 11-7082 (5 μmol/L) for 24 h, followed with treatment of 1 mg/L LPS for 6 h. Cells were lysed for detections of NRF1, NF-κB p65 and its target genes as well as the binding sites of NRF1 on RELA (encoding NF-κB p65) promoter by chromatin immunoprecipitation assay (ChIP). Results showed that LPS stimulated NRF1 and NF-κB p65. Pro-inflammatory factors including interleukin-1β (IL-1β) and IL-6 were significantly increased both in vivo and in vitro. Obvious nuclear translocations of NRF1 and p65 were observed in LPS-stimulated lung tissue. Silencing NRF1 resulted in a decrease of p65 and its target genes both in vivo and in vitro. In addition, BAY 11-7082, an inhibitor of NF-κB, significantly repressed the inflammatory responses induced by LPS without affecting NRF1 expression. Furthermore, it was proved that NRF1 had three binding sites on RELA promoter region. In summary, NRF1 is involved in LPS-mediated acute lung injury through the transcriptional regulation on NF-κB p65.


Subject(s)
Animals , Male , Mice , Acute Lung Injury/genetics , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Nuclear Respiratory Factor 1/genetics , RNA, Small Interfering , Transcription Factor RelA/metabolism
5.
Clinics ; 76: e2484, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153996

ABSTRACT

OBJECTIVES: To investigate the role of miR-139-5p and the TLR4/MyD88/NF-κB signaling pathway in acute lung injury in septic mice. METHOD: A total of 140 healthy male SPF C57BL/6 mice were divided into seven groups, i.e., Normal, Control, NC, miR-139-5p mimic, miR-139-5p inhibitor, TAK-242, and miR-139-5p inhibitor+TAK-242 groups. The levels of miR-139-5p, proteins related to the TLR4/MyD88/NF-κB signaling pathway (TLR4, MyD88, and p-NF-κB p50), and MPO, SOD, GSH, and MDA in lung tissue were measured. The lung tissue wet-to-dry mass ratio (W/D), arterial oxygen partial pressure (PaO2), and carbon dioxide partial pressure (PaCO2) were measured. RESULTS: A web-based bioinformatic tool predicted that MyD88 was a target of miR-139-5p, which was verified by a dual luciferase reporter assay. Compared with those in the Normal group, the levels of miR-139-5p, PaO2, SOD, and GSH were significantly lower, while those of TLR4, MyD88, p-NF-κB p50, W/D, PaCO2, IL-1β, TNF-α, IL-6, MPO, and MDA were higher in all other groups. Moreover, compared with their levels in the Control group, these indicators exhibited contrasting results in the miR-139-5p mimic and TAK-242 groups, but were similar in the miR-139-5p inhibitor group. In the miR-139-5p inhibitor+TAK-242 group, acute lung injury, aggravated by miR-139-5p inhibitor, was partially rescued by TAK-242. CONCLUSION: miR-139-5p inhibits the TLR4/MyD88/NF-κB signaling pathway to alleviate acute lung injury in septic mice.


Subject(s)
Animals , Male , Rats , Sepsis/genetics , MicroRNAs/genetics , Acute Lung Injury/genetics , Signal Transduction , NF-kappa B/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Mice, Inbred C57BL
6.
China Journal of Chinese Materia Medica ; (24): 4816-4823, 2021.
Article in Chinese | WPRIM | ID: wpr-888189

ABSTRACT

The present study explored the mechanism of Fagopyri Dibotryis Rhizoma(FDR) and its main active components in the treatment of acute lung injury(ALI) based on the network pharmacology and the in vitro experiments. The main active components of FDR were obtained from the TCMSP database and screened by oral bioavailability and drug-likeness. The related target proteins of FDR were retrieved from the PubChem database, and the target genes related to ALI were screened out from the GeneCards database. A protein-protein interaction(PPI) network of compound target proteins and ALI target genes was constructed using STRING 11.0. Ingenuity Pathway Analysis(IPA) platform was used to analyze the common pathways of the potential compound target proteins of FDR and ALI target genes, thereby predicting the key targets and potential signaling pathways of FDR for the treatment of ALI. Finally, the potential pathways and key targets were verified by the in vitro experiments of lipopolysaccharide-induced RAW264.7 cells intervened by epicatechin(EC), the active component of FDR. The results of network pharmacology showed that 15 potential active components such as EC, procyanidin B1, and luteolin presumedly functioned in the treatment of ALI through nuclear transcription factor-κB(NF-κB) signaling pathway, transforming growth factor-β(TGF-β) signaling pathway, and adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK) signaling pathway through key targets, such as RELA(P65). The results of in vitro experiments showed that 25 μmol·L~(-1) EC had no toxicity to cells and could inhibit the expression of the p65-phosphorylated protein in the NF-κB signaling pathway to down-regulate the expression of downstream inflammatory cytokines, including tumor necrosis factor-α(TNF-α), IL-1β and nitric oxide(NO), and up-regulate the expression of IL-10. These results suggested that the therapeutic efficacy of FDR on ALI was achieved by inhibiting the phosphorylation of p65 protein in the NF-κB signaling pathway and down-regulating the level of proinflammatory cytokines downstream of the signaling pathways.


Subject(s)
Acute Lung Injury/genetics , Lipopolysaccharides , NF-kappa B/metabolism , Rhizome , Signal Transduction
7.
China Journal of Chinese Materia Medica ; (24): 3960-3969, 2021.
Article in Chinese | WPRIM | ID: wpr-888122

ABSTRACT

This study aimed to explore the mechanism of Tanreqing Injection in the treatment of acute lung injury(ALI) based on network pharmacology and molecular docking. The active components and action targets of Tanreqing Injection were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), PubChem, and SwissTargetPrediction databases, as well as available literature reports. The ALI-related targets were obtained from the GeneCards database and then mapped with Tanreqing Injection targets. Following the construction of "drug-component-potential target" network with Cytoscape 3.6.1, the potential targets were input into STRING to yield the protein-protein interaction(PPI) network, which was plotted using Cytoscape 3.6.1. Then the screened key targets were subjected to gene ontology(GO) and Kyoto encyclopedia of genes and genomes(KEGG) enrichment analysis based on DAVID database. The top three key targets RAC-alpha serine/threonine-protein kinase(AKT1), albumin(ALB) and interleukin-6(IL6) were docked to the top three key compounds by PyMOL and AutoDock vina. A total of 58 active components of Tanreqing Injection, 597 corresponding targets and 503 common targets shared by Tanreqing Injection and ALI were fi-gured out, with the key targets AKT1, ALB and IL6 involved. GO and KEGG enrichment analysis yielded 1 445 biological processes and 148 signaling pathways, respectively. Molecular docking verified a good binding ability of the top three key targets to the top three key compounds. The analysis based on network pharmacology and molecular docking uncovered that Tanreqing Injection directly or indirectly regulated the pulmonary capillary endothelial cells and alveolar epithelial cells via anti-inflammation, thus alleviating ALI.


Subject(s)
Humans , Acute Lung Injury/genetics , Drugs, Chinese Herbal , Endothelial Cells , Medicine, Chinese Traditional , Molecular Docking Simulation
8.
China Journal of Chinese Materia Medica ; (24): 5693-5700, 2021.
Article in Chinese | WPRIM | ID: wpr-921754

ABSTRACT

To investigate the potential molecular markers and drug-compound-target mechanism of Mahuang Shengma Decoction(MHSM) in the intervention of acute lung injury(ALI) by network pharmacology and experimental verification. Databases such as TCMSP, TCMIO, and STITCH were used to predict the possible targets of MHSM components and OMIM and Gene Cards were employed to obtain ALI targets. The common differentially expressed genes(DEGs) were therefore obtained. The network diagram of DEGs of MHSM intervention in ALI was constructed by Cytoscape 3. 8. 0, followed by Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses of target genes. The ALI model was induced by abdominal injection of lipopolysaccharide(LPS) in mice. Bronchoalveolar lavage fluid(BALF) was collected for the detection of inflammatory factors. Pathological sectioning and RT-PCR experiments were performed to verify the therapeutic efficacy of MHSM on ALI. A total of 494 common targets of MHSM and ALI were obtained. Among the top 20 key active compounds of MHSM, 14 from Ephedrae Herba were found to be reacted with pivotal genes of ALI [such as tumor necrosis factor(TNF), tumor protein 53(TP53), interleukin 6(IL6), Toll-like receptor 4(TLR4), and nuclear factor-κB(NF-κB)/p65(RELA)], causing an uncontrolled inflammatory response with activated cascade amplification. Pathway analysis revealed that the mechanism of MHSM in the treatment of ALI mainly involved AGE-RAGE, cancer pathways, PI3 K-AKT signaling pathway, and NF-κB signaling pathway. The findings demonstrated that MHSM could dwindle the content of s RAGE, IL-6, and TNF-α in the BALF of ALI mice, relieve the infiltration of inflammatory cells in the lungs, inhibit alveolar wall thickening, reduce the acute inflammation-induced pulmonary congestion and hemorrhage, and counteract transcriptional activities of Ager-RAGE and NF-κB p65. MHSM could also synergically act on the target DEGs of ALI and alleviate pulmonary pathological injury and inflammatory response, which might be achieved by inhibiting the expression of the key gene Ager-RAGE in RAGE/NF-κB signaling pathway and downstream signal NF-κB p65.


Subject(s)
Animals , Mice , Acute Lung Injury/genetics , Drugs, Chinese Herbal/pharmacology , Lipopolysaccharides , Lung/metabolism , NF-kappa B/metabolism , Network Pharmacology , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL